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Abstract—To ensure reliable and efficient communication in
B2B environments, we relied on the use of composite Web
services. Indeed, in some cases, a service cannot provide the
functionality required by the user unless it communicates with
other services. This leads to the notion of Web services com-
position. The communication of these Web services has to be
guaranteed without errors such as deadlocks. In this way, formal
verification of Web services composition is a focused-on research
field. It is in this context that our work is proposed. We have
developed a tool for modeling and formal verification of Web
services composition which is based on the modeling of these
services by open workflow nets: a special class of Petri nets
used to model business processes which communicate together
via interface places. This tool checks temporal properties written
in CTL against a WSC model translated into SMV code. The
verification is ensured by invoking the NuSMV Model Checker.

Keywords—Model checking, Web Services Composition, open
workflow nets, NuSMV, CTL, soundness property.

I. INTRODUCTION

Web services have become widely used in the B2B envi-
ronment to ensure the information exchange and sharing. They
allow publishing Web services in the Web and therefore indus-
tries can have access to and benefit from them. Services can be
defined by three standards: SOAP (which allows the exchange
of XML messages), UDDI (to establish the list of available
services) and WSDL (which allows the services description).
But they suffer from some limitations. Indeed, in some cases,
a single service cannot meet the needs of the user, but to to get
there, it must communicate with another service. It is for this
reason that we refer to the composition of Web services. In
order to realize this composition, several approaches have been
proposed. The first one is an approach based on workflows.
The researchers adopted several languages to implement this
approach, namely eFlow [5]. The second approach relied on
XML. The most popular languages that are based on this
approach are XLANG and BPEL4WS [6]. Unfortunately, these
methods suffer from a total lack of semantic representations
of services, which has led researchers to propose another
approach based on ontology such as OWL-S [10]. It enables
the exchange of information in a meaningful way. However,
these approaches cannot verify certain properties such as QoS,

accuracy, etc. This is why the description of the composition
based on formal methods is necessary and interesting since
these methods allow the analysis of Web services composition.

The composition of Web services faces many constraints
and requirements. Because bugs can cause unexpected shut-
down of the software, developers require reliable design of
such complex systems. Many other developers require a war-
ranty for the validity of use of these systems. They also require
a total absence of undesired behavior to avoid damage that
may be the result of error occurrence and which eventually
cause serious financial losses. Mainly, we must validate these
systems, before putting them up, with checking the sequence
of the process and its operation. To perform this checking,
two formal methods have been proposed: theorem proving and
Model checking. With the first method, the system is seen as
a theorem that we seek to prove from a set of axioms. But
the model checking studies all possible cases of a computer
system and eventually presents a counter example in case
of error. Since the identification of the error in the process
became a critical need, we chose the formal verification based
on model checking. This process occurs in three different
phases: Modeling of the system behavior, Specification of the
requirements to be verified and finally the Verification. Two
cases arise at this latter stage: either the system is validated
or not and in the second case, the model checker displays
a counter example, which may be used to specify the exact
location of the error.

In this context, we propose a tool to model and formally
verify the composition of Web services. This tool is char-
acterized by its graphical environment, facilitating its use,
and in which the user can first model graphically the overall
process by means of open workflow nets. Then, the modeled
process is generated in SMV language, the input language of
NuSMV model checker. Finally the tool can check soundness
properties, specified in CTL, and above all display a counter
example in case there are problems in phase of process
modeling.

The rest of this paper is organized as follows. Section 2 is
dedicated to present preliminaries on Web services composi-
tion (WSC), Petri nets as well as model checking techniques.
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We present in section 3 our approach of formal verification
of WSC. In section 4, we describe the features of our tool
implementing and facilitating the formal verification of WSC.
Section 5 draws a case study in order to illustrate the approach.
In section 6, we review some related work. Section 7 concludes
the paper and announces directions to future work.

II. PRELIMINARIES

A. Web services composition

Web services composition (WSC) consists on the construc-
tion of new Web services by composing existing ones. A
composite service is a new service with added value obtained
by combining other existing services. It can be the allocation
of basic services or composite services. Figure 1 shows the
obtaining composite service.

Fig. 1. Schematic description of WSC

B. Petri nets

Petri nets were originally developed to meet the need
in specifying process synchronization, asynchronous events,
concurrent operations, and conflicts or resource sharing for a
variety of industrial automated systems at the discrete-event
level. For that reasons, we propose to model WSC using Petri
nets [3].

A Petri net is a 4-tuple N = (P, T, F,W ) where P and T are
two finite non-empty sets of places and transitions respectively,
P ∩ T = ∅ , F ⊆ (P × T ) ∪ (T × P ) is the flow relation,
and W : (P × T )∪ (T ×P )→ N is the weight function of N
satisfying W (x, y) = 0⇔ (x, y) /∈ F .

If W (u) = 1 ∀u ∈ F then N is said to be ordinary net and
it is denoted by N = (P, T, F ).

For all x ∈ P ∪ T , the preset of x is •x = {y|(y, x) ∈ F}
and the postset of x is x• = {y|(x, y) ∈ F}.

A marking of a Petri net N is a function M : P → N. The
initial marking of N is denoted by M0.

A transition t ∈ T is enabled in a marking M (denoted by
M [t〉) if and only if ∀p ∈ •t : M(p) ≥W (p, t).

If transition t is enabled in marking M , it can be fired,
leading to a new marking M ′ such that: ∀p ∈ P : M ′(p) =
M(p)−W (p, t) +W (t, p).

The firing is denoted by M [t〉M ′.
The set of all markings reachable from a marking M is

denoted by [M〉.

For a place p of P, we denote by Mp the marking given by
Mp(p) = 1 and Mp(p

′) = 0 ∀p′ 6= p.
Petri nets are represented as follows: places are represented

by circles, transitions by boxes, the flow relation is represented
by drawing an arc between x and y whenever (x, y) is in
the relation, and the weight function labels the arcs whenever
their weights are greater than 1. A marking M of a Petri net
is represented by drawing M(p) black tokens into the circle
representing the place p.

C. Model checking Techniques

Formal methods and tools have proved useful to give high-
level and precise descriptions of computer systems, and to
analyze exhaustively these systems at early phases of the
system development process. They are a particular kind of
mathematically-based techniques for the specification, devel-
opment and verification of software and hardware systems.
The use of formal methods for software and hardware design
is motivated by the expectation that, as in other engineering
disciplines, performing appropriate mathematical analysis can
contribute to the reliability and robustness of a design.

Model checking is a formal verification method that ex-
plores all possible system states in a brute-force manner. A
model checker -the software tool that performs the model
checking- examines all possible system scenarios in a system-
atic manner. In this way, it can be shown that a given system
satisfies a certain property. It is a real challenge to examine the
largest possible state spaces that can be treated with current
means, i.e., processors and memories.

There are many powerful model checkers such as NuSMV
[1], BLAST [12] and SPIN [9]. NuSMV is an extension
and re-implementation of SMV symbolic model checker, the
first model checking tool which is based on Binary Decision
Diagrams (BDDs) [4]. The tool has been designed to be an
open architecture for model checking. It has been developed
in a joint project between ITC-IRST, the University of Genoa,
the University of Trento and Carnegie Mellon University.

NuSMV allows the formal verification of finite state systems
based. This tool takes as input a model described in the SMV
language and supports the verification of temporal properties
written in CTL and LTL. It offers many features including
essentially the navigation of a counter example. In fact, all
the model checkers can generate a counter example, the
particularity of NuSMV is that it offers the possibility to the
user to move from one state to another and even to assess the
CTL expression of the counter example status. [1]

CTL (Computation Tree Logic) is a temporal logic which
permits to express certain properties from a given state graph
in order to check the validity of these properties. CTL formulas
are defined by the following grammar:

ϕ ::= >|⊥|p
|¬ϕ|ϕ ∧ ϕ|ϕ ∨ ϕ|ϕ→ ϕ
|AXϕ|EXϕ|AFϕ|EFϕ|AGϕ
|EGϕ|A[ϕ t ϕ]|E[ϕ t ϕ]
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Where A models all possible paths from the current time,
E models at least one path from the current moment A and E
are usually followed by one of the following prefixes: X, U,
G and F.

A CTL formula f is built from atomic propositions corre-
sponding to variables, boolean operators such as ¬, ∨, ∧, →,
and temporal operators. Each temporal operator consists of
two parts. A path quantifier (A or G) followed by a temporal
modality (F , G, X , U ). The temporal operators are interpreted
relative to a current state s. The path quantifier indicates if the
temporal operator expresses a property that should hold on all
paths starting at s (denoted by the universal path quantifier A),
or at least on one of these paths (denoted by the existential
path quantifier E). The temporal modalities are interpreted as
follows:
• Xp (neXt time p) is true if the formula p is true in the

state reached immediately after the current state in the
path.

• Fp (Future p) is true if there exists a state in the path
where the formula p is true.

• Gp (Globally p) is true if p is true at every state in the
path.

• pUq (p Until q) is true if there is a state in the path
where q is true and p is true in all preceding states (if
any). This definition is the so called ”strong until”. ”Weak
until” would also be true when q holds forever.

III. WSC FORMAL VERIFICATION APPROACH

Our goal is to achieve a formal verification of WSC based on
NuSMV model checker. To ensure the invocation of NuSMV
for model checking, we have to prepare the model of the WSC
in SMV code and to specify the requirements to be verified
in CTL or LTL temporal logic.

Due to the difficulty of describing the system in SMV
language on the one hand and the expressive power as well as
the graphical nature of Petri nets on the other hand, we propose
to model first the WSC in Petri nets and then to translate the
obtained model into SMV. Afterwards, we propose to specify
in CTL the requirements to be verified. Finally, we invoke
NuSMV to verify if the model meets the requirements. This
approach is presented in figure 2.

The first phase consists on modeling the WSC based on
Petri nets. We, especially, used open workflow nets to model
Web services which communicate with other services. Open
workflow nets (oWF-nets) result from the extension of work-
flow nets (WF-nets) by adding external places for the com-
munication of the external environment of the considered Web
services. Now for WF-nets, they result from the application of
Petri nets to workflow management [13]. A WF-net is a Petri
net with two special places: input place i containing initially
x tokens (x is the number of instances ready for execution)
and a final place f . In a WF-net, each node is in a path from
i to f . For WSC, we model each Web service by an oWF-net
describing the control flow between the tasks ensured by this
service and containing interface places used to communicate
with other Web services. The overall obtained model is a Petri

Fig. 2. The WSC formal verification approach

net with a set of input places, a set of output places and a set
of interface places.

The second phase is the translation of the obtained Petri net
into an SMV code. We ensured this translation after proposing
a method to describe a WSC Petri net in the SMV language.
The SMV code starts by declaring the header MODULE. In
this module, we find the definition of:
• VAR: to declare variables (places and transitions).
• INIT: to initialize variables.
• TRANS: the transition relation defining the evolution of

the various states.
• DEFINE: to define the eventual used macros.
In the VAR clause, we define s arrays of places to save the

places marking, s arrays of transitions used to save the firing
of the transitions (s is the number of Web services involved
in the composition) and an array used to save the marking
of interface places. These arrays are initialized in the INIT
clause as follows: the places cells are initialized to 0 except
those corresponding to input places; they are initialized to the
number of tokens entered at the beginning of the modeling;
the interface places cells and those of transitions are also
initialized to 0.

The dynamic behavior of the system is described in the
TRANS part in which is described the evolution of the system
states. This description is ensured via macros defined in the
DEFINE part. The evolution of a system state is ensured if
some firing condition is verified, i.e. if each input place of a
given transition contains at least one token. If this condition
is verified, the firing is saved by increasing by 1 the transition
cell, increasing by 1 the cell corresponding to each output
place of the transition and by decreasing by 1 the marking of
each input place.

Once the model is specified in SMV, we have to specify
in CTL any requirements to be checked by NuSMV model
checker. We propose here to present and formulate soundness
properties of WSC. The soundness property is first introduced
in [14] to verify the correct execution of workflow processes.
The soundness of a WSC guarantees the absence of livelocks,
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deadlocks (blocking) and other anomalies that can damage
the system in question. It requires that the overall Petri net
has a clean termination and that at any state of the process,
there is at least one task which can be executed. Formally, a
composed oWF-net os s services is called sound if and only
if the following three requirements are satisfied:

1) Termination: For each reachable marking (from M0 =
[i1, i2, .., is]) the final marking Mf = [f1, f2, .., fs] is
reachable;

2) Proper Termination: For each reachable marking M , if
M ≥Mf holds then M = Mf = [f1, f2, .., fs];

3) Absence of deadlocks: Starting with a token in each
input place ij , it should be possible to execute a random
task by following the appropriate route through the
composite oWF-nets, i.e. there are no dead transitions.
∀t, ∃M ∈ [M0〉: M [t〉.

In CTL, this soundness property is specified by these
formulas:

1) EF (
s=n

&
s=1

(PLSs[fs] > 0))

2) EG((
s=n

&
s=1

(PLSs[fs] > 0)) → (AF (
s=n

&
s=1

(PLSs[fs] >

0 & PLSs[\fs] = 0) &
k=ni

&
k=1

(I[pk] = 0))))

3) AG(EG(
s=n

|
s=1

TRSs[t] = 1))

Where n is the number of involved services, ni is the
number of interface places, PLSs[fs] denotes the marking of
the final place fs of the service s, PLSs[\fs] denotes the
marking of any place except fs, I is the table saving the
marking of interface places and TRSs the table saving the
firing of transitions of service s.

IV. IMPLEMENTATION OF THE WSC FORMAL
VERIFICATION

In order to facilitate to users the WSC analysis, we proposed
to fully implement this approach. Hence,we developed in Java
a graphical tool which allows the user to (1) model a Web
service which may be simple or composite by respectively
workflow nets [14] or open workflow nets, (2) compile it by
verifying if the constructs used are seemly (3) generate the
corresponding SMV code and (4) verify soundness properties.

In more details, the tool features are :

• Modeling Web services composition by giving the user
the possibility to draw the oWF-net based model of the
WSC. To do this, it was suggested to the user to enter
as many input places and transitions as he wants, so
he can model each Web service by a WF-net. Then, he
adds interface places, which are distinguished from other
places, to interconnect the different Web services. After
this modeling, and before doing other tasks, the user must
compile the overall process in order to check that the
model presented is syntactically correct. In case of error,
a message will be displayed and the following tasks won’t
be enabled.

• Request of an SMV code generation: Here, if an edited
model is compiled successfully, the user can request to
show the corresponding SMV code.

• Checking of the model: The system can not verify the
user model unless it is compiled successfully. Here, the
tool will check the soundness of the modeled process.

• Verification of a property: If the user knows CTL, he
can enter directly some requirements to verify in a CTL
formula and check it. To do this, he is given a CTL
editor to facilitate the formulas entering and to prevent
syntactical errors.

To better present these different features, we propose to
draw a UML sequence diagram, illustrated in Figure 3, which
details the interactions between the user, the system and the
model checker.

Fig. 3. Sequence diagram describing the general feature of the tool

In order to achieve the implementation of this tool in Java,
we divided our application into five packages:

• Package PetriNet: It contains the different classes defining
the objects that the user will enter: Input place, Output
place, Transition, interface Place, Arc, Place and the class
that defines the process.

• Package Library: contains all the libraries needed for the
application.

• Package Interface: It is responsible for the Graphical
Interface tool. It allows the user to model the composite
oWF-Net by giving him a hand to draw his process. It
also provides features such as side window and display
management.

• Package Parser: It is responsible for the syntactical check-
ing of the WSC. It also ensures the generation of an XML
description file of the WSC compliant to the PNML norm.

• Package Model Checking: It permits to generate the SMV
code and thus to validate the overall process edited by the
user by invoking the NuSMV model checker.
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V. CASE STUDY

To illustrate the approach presented and to test the imple-
mented functioning of the tool, we propose to study a Web
portal of credit management. We treat only the case of a credit
request by a client. The scenario is as follows: The client
begins by entering his id (name and password). A service is
needed to check the validity of this id. If it is not valid, then
the customer must enter his id again. Otherwise he can request
a credit. Then, he enters his guarantee and balance. At this
stage, the validation service intervenes to check the availability
of this balance. If it is not available, the process ends, else,
the service suits the customer’s request. Here, the processing
request service puts it in the list of tasks to be performed. A
supervisor withdraws a request from this list and evaluates its
private part (by checking the relevant information to the client)
and its public part. In assessing the public part, the supervisor
may either:
• Reject the request: then the supervisor sends a rejection

message to the customer.
• Update the application: in this case, the supervisor sends a

message to the client to ask him to update his application.
This client can either accept or reject this proposal.

• Accept the request: in this case, a supervisor updates and
evaluates the request. Then, he sends the customer an
offer that he can accept or reject.

Modeled by oWF-nets, this portal is described in figure 4.
The SMV code is generated by our tool in order to be

checked by NuSMV. A piece of the generated code is given
in figure 5.

Fig. 5. A snapshot of the generated SMV code of the WSC studied

VI. RELATED WORK

WSC is a very important topic which attracted the attention
of researchers and industrials. However, we still note a lack
in the number of WSC verification tools. We review in this
section different works which highlighted the WSC in general
and their verification in particular. Fu et al. [15] modeled the
composition of Web services by finite state automata. Their
model assumes that the communication is done between pairs
of services through asynchronous messages. At first, They
specified services in BPEL. Then they modeled them by the
finite state automata in order to specify them with Promela
language and eventually check them with SPIN.

Ouyang et al. [2] studied the verification of the Web services
composition that are based on BPEL. To do so, they first made
the mapping of services described in BPEL to those described
by Petri nets using the tool BPEL2PNML. This tool takes as
input the code written in BPEL and displays the output to a file
with a PNML syntax. Receiving the file, the WofBPEL tool
generates an XML file containing the results of the analysis.

Narayanan et al. proposed in [11] an interpreter DAML-S,
based on the environment KarmaSIM to ensure the description,
simulation, and verification of the composition of semantic
Web services. In fact, they focused their work on ontological
Web services modeled by Petri nets and based on DAML-S.

Foster et al. [7] have implemented a plugin LTSAWS to the
existing tool LTSA, which uses FSP to describe the behavior
of models. The tool allows integrating different specifications
and implementations of Web service composition and audits.

Our work is not limited to a simple checking of the
composition. In fact, the tool we proposed permits to model
the composition by oWF-nets offering hence a very under-
standable graphical environment which is easy to use. Then,
it generates a SMV code that is given as an input to NuSMV,
which will eventually check the soundness property.

VII. CONCLUSION

We proposed in this paper a tool for formal verification
of Web services composition. These services are modeled by
oWF-nets composed of a set of workflow nets interconnected
via interface places. These places ensure the communication
between the different services. This model is generated to an
SMV code that is sent to NuSMV Model Checker. NuSMV
verifies certain properties formulated in CTL such as sound-
ness properties.

In case of failure, NuSMV generates a counter example that
we analyse and present to the user in order to help him to find
the error and then correct the process. This tool ensures more
safety in the design of complex systems and therefore avoids
the technical and financial losses that may result from small
errors. More precisely, we benefited from model checking as a
powerful technique to verify and to detect the eventual errors
at an early stage.

The presented tool can be extended by the integration of
temporal constraints when modeling the composition of Web
services. These constraints allow us to specify a certain time
to respect for each Web service operation.
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Fig. 4. The credit management Petri net based model
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